Ba/EC2.CC4

2023

(CBCS)

(2nd Semester)

ECONOMICS

(Honours)

Paper No.: EC2.CC4

(Mathematical Methods for Economics—II)

Full Marks: 75
Pass Marks: 40%

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. (a) If $A = \begin{bmatrix} x & -2 & y \\ 4 & z & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & x & z \\ x & y & 2 \end{bmatrix}$, find A 2(B).
 - (b) Solve the coefficient matrix for the systems

$$x-2y+3z = 1$$

 $3x-y+4z = 3$
 $2x+y-2z = -1$

5

L23/480 (Turn Over)

(2)

OR

2. State the properties of determinants with example.

UNIT-II

- **3.** Find the partial derivatives of the following:
 - $(a) \quad U = x^2y + xy^2$
 - (b) $U = x^2y^2 + x^5 + y^5$
 - (c) $U = e^{x^2 + y^3}$
 - (d) $U = 4x^2$

OR

4. What is total differentiation? Discuss briefly the applications of total differentiation in economic analysis.

5+10=1

UNIT-III

5. Write notes on the following:

7+8=15

- (a) Constrained optimization by substitution method
- (b) Lagrange multiplication method

L23/480

(Continued)

OR

6. A firm has a budget of $\stackrel{?}{=}$ 300 to spend on the three inputs x, y, z whose prices per unit are $\stackrel{?}{=}$ 4, $\stackrel{?}{=}$ 1 and $\stackrel{?}{=}$ 6 respectively. What combination of x, y, z should it employ to maximize output if it faces the production function $Q = 24x^{0.3}y^{0.2}z^{0.3}$?

15

UNIT-IV

- 7. (a) A firm faces the total revenue schedule $TR = 600q 0.5q^{2}.$
 - (i) What is the marginal revenue when q = 100?
 - (ii) What is the total revenue at its maximum?

2

3

(iii) What price should the firm charge to achieve this maximum total revenue?

3

(b) Find the extreme values of the function

 $y = x^3 - 9x^2 + 15x + 20$

7

OR

8. What is profit maximization? The total cost function of a firm is given by $TC = aq^2 + bq + c$, where q is the quantity and

L23/480

5

(Turn Over)

demand function is given by $P = \beta - aq^2$, where P is the price. Find out the profit maximizing output of the firm. 5+10=1;

UNIT--V

9. (a) Solve:

5+5=10

(i)
$$y(1-x)-x\frac{dy}{dx}=0$$

(ii)
$$(x-xy^2) dx + (y-x^2y) dy = 0$$

(b) Solve the differential equation

$$\frac{dy}{dx} + 5y = 10$$

with the initial condition y(0) = 6.

5

OR

- **10.** (a) Explain the solution of first-order difference equation by iteration method.
 - (b) Solve $y_{t+2} + 2y_{t+1} 3y_t = 16$ with initial condition, $y_0 = 10$ when t = 0 and $y_1 = 6$ when t = 1.

8

7

* * *