Ba/Eco-102 (N)

2021

(1st Semester)

ECONOMICS

(Honours)

Paper No.: ECO-102

(New Course)

(Quantitative Techniques-I)

Full Marks: 70
Pass Marks: 45%

Time: 3 hours

figures in the margin indicate full marks for the questions

UNIT-I

Given
$$A = \{a, b\}, B = \{4, 6\}$$
 and $C = \{5, 6\}$. Find—
$$(h \mid A \mid (B \cap C);$$

$$(ii) \mid (A \mid B) \cap (A \times C).$$
Verify whether

 $A \cdot (B \cap C) = (A \times B) \cap (A \times C)$ \(\frac{1}{2} \tag{3}=6\)

.

: Turn Over

(2)

{b}	If	
1 = :	j, k, l, m, n , $X = \{j, k, m\}$ and $Y = \{k, m, n\}$	
	show that $(X \cap Y)' = X' \cup Y'$.	4
/C)	If $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $P = \{4, 5, 6\}$ and $Q = \{5, 6, 8\}$, show that	
	$(P \cup Q)' = P' \cap Q'$	4
OR		
2. 16.	Each student in a class of 40 plays at least one indoor game chess, carom and scrabble. 18 play chess, 20 play scrabble and 27 play carom. 7 play chess and scrabble, 12 play scrabble and carom and 4 play chess, carom and scrabble. Find the number of students who play— (i) chess and carom;	
	(ii) chess, carom but not scrabble.	8
3.	Discuss the types of functions and their applications in economics.	6
	UNIT—II	
3	Add $3 + 3i$ and $-4 + i$ and subtract $3 + 3i$ from $-1 + 4i$ graphically.	3=6
1.00 2002	Discuss the axiomatic properties of real numbers.	8
1, 16	- Continue	d/

(3)

OR

- 4. (a) Find the equation of a straight line that has y-intercept 4 and is perpendicular to straight line joining (2, -3) and (4, 2).
 - (b) Find the coordinates of the centre and radius of the circle whose equation is

$$3x^2 + 3y^2 - 6x + 9y - 4 = 0$$

for Find the equation of a circle which passes through three points (0, 1), (5, 1) and (2, -3).

UNIT-III

5. (c) Find $\frac{dy}{dx}$ of the following: 4+3+3=10

(i)
$$x^2 + y^2 + 2x + 2y - 2 = 0$$

(ii)
$$\frac{x^2+5}{x^2+x}$$

(iii)
$$(x+2)(3x+2)$$

thi Find the maximum and minimum values of the following function:

$$Y = 3x^4 - 10x^3 + 6x^2 + 5$$

(Turn Over)

- 6. (a) Find E_d , if the demand function is $x = 25 4p + p^2$, where x is the demand for commodity at price p and find out the point elasticity at price level p = 8, p = 4 and p = 5.
 - (b) Discuss the relationship between average and marginal cost curves through differentiation.
 - (c) A firm has the following total cost and demand functions:

$$C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50$$
 and $Q = 100 - p$

Find the profit maximising level of output; also find profit at this level of output.

UNIT-IV

- 7 Integrate the following:
- 2+4+4+4=14

4

5

$$(a) \int (x^3 - 4x^2 + x) dx$$

(b)
$$\int \frac{x^4 - 8}{x} \, dx$$

$$(c) = \int 2x(x^2+1)\,dx$$

$$(d) \int \left(\frac{1}{x^2} + \frac{4}{x\sqrt{x}} + 2\right) dx$$

3.11 **/6**

(Continued)

OR

8. (a) If the demand function is $p = 85 - 4x - x^2$, what will be the consumer's surplus, if—

(i)
$$x_0 = 5$$
;
(ii) $p_0 = 64$?

8

6

8

Find the producer's surplus when

$$p_d = 3x^2 - 20x + 5$$
, $p_s = 15 + 9x$

Solve the following equation through matrix inversion :

$$A = \begin{bmatrix} 3x - 2y + 3z = 8 \\ 2x + y - z = 1 \\ 4x - 3y + 2z = 4 \end{bmatrix}$$

Discuss the properties of determinants.

OR

Compute (i) 2A - 3B and (ii) ABC for the following matrices: $2^{\pm}2^{\pm}4$

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(Turn Over)

1 10014.

b) Write short notes on (i) diagonal matrix and (ii) symmetric matrix with examples.

2+2=4

6

Solve the following set of equations by Cramer's rule method:

2x - 3y + 4z = 8

3x - 4y - 5z = -4

4x - 5y + 6z = -12

* * *